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Thermal Joint Resistances of Conforming
Rough Surfaces with Gas-Filled Gaps

M. Bahrami,∗ M. M. Yovanovich,† and J. R. Culham‡

University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

An approximate analytical model is developed for predicting the heat transfer of interstitial gases in the gap
between conforming rough contacts. A simple relationship for the gap thermal resistance is derived by assuming that
the contacting surfaces are of uniform temperature and that the gap heat transfer area and the apparent contact area
are identical. The model covers the four regimes of gas heat conduction modes, that is, continuum, temperature
jump or slip, transition, and free molecular. Effects of main input parameters on the gap and joint thermal
resistances are investigated. The model is compared with other models and with more than 510 experimental data
points in the open literature. Good agreement is shown over the entire range of the comparison.

Nomenclature
A = area, m2

a = radius of contact, m
bL = specimens radius, m
c1 = Vickers microhardness coefficient, Pa
c2 = Vickers microhardness coefficient
d = distance between two parallel plates, m
F = external force, N
Hmic = microhardness, Pa
H ′ = c1(1.62σ ′/m)c2 , Pa
H ∗ = c1(σ

′/m)c2 , Pa
Kn = Knudsen number
k = thermal conductivity, W/mK
l = depth, m
M = gas parameter, m
Mg = molecular weight of gas, kg/kmol
Ms = molecular weight of solid, kg/kmol
m = mean absolute surface slope
ns = number of microcontacts
P = pressure, Pa
Pr = Prandtl number
Q = heat flow rate, W
q = heat flux, W/m2

R = thermal resistance, K/W
r, z = cylindrical coordinates
T = temperature, K
t = dummy variable
Y = mean surface plane separation, m
z = surface height, m
αT = thermal accommodation coefficient
γ = ratio of gas specific heats
� = mean free path, m
λ = nondimensional separation ≡ Y√

2σ
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µ = ratio of molecular weights ≡ Mg/Ms

σ = rms surface roughness, m
σ ′ = σ/σ0, where σ0 = 1 µm
φ(z) = Gaussian distribution of surface heights
ω = asperity deformation, m

Subscripts

a = apparent
cont = continuum
fm = free molecular
g = gas, gap
j = joint
L = large
mic = micro
mic, e = effective micro
r = real
s = solid, micro
tr = transition
0 = reference value
1, 2 = solid 1, 2

Introduction

H EAT transfer through interfaces formed by mechanical con-
tacts has many important applications such as microelectron-

ics cooling, nuclear engineering, and spacecraft structures design.
Generally the heat transfer through the contact interfaces is associ-
ated with the presence of interstitial gases. The rate of heat transfer
across the joint depends on a number of parameters: thermal proper-
ties of solids and gas, gas pressure, surface roughness characteristics,
applied load, and contact microhardness.

When random rough surfaces are placed in mechanical contact,
real contact occurs at the top of surface asperities called microcon-
tacts. The microcontacts are distributed randomly in the apparent
contact area Aa and located far from each other. In the real con-
tact area Ar , the summation of microcontacts forms a small portion
of the nominal contact area typically a few percent of the nominal
contact area.

The geometry of a typical conforming rough contact is shown in
Fig. 1, where two cylindrical bodies with a radius of bL are placed
in mechanical contact. The gap between the microcontacts is filled
with an interstitial gas, and heat is transferred from one body to the
other. Conduction through microcontacts and the interstitial gas in
the gap between the solids are the two main paths for transferring
thermal energy between contacting bodies. Thermal radiation across
the gap remains small as long as the surface temperatures are not
too high, that is, less than 700 K, and in most applications can be
neglected.1 As a result of the small real contact area and low thermal
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conductivities of interstitial gases, heat flow experiences a relatively
large thermal resistance passing through the joint; this phenomenon
leads to a relatively high-temperature drop across the interface.

Natural convection does not occur within the fluid when the
Grashof number is below 2500 (Ref. 2). (The Grashof number can
be interpreted as the ratio of buoyancy to viscous forces.) In most
practical situations concerning thermal contact resistance, the gap
thickness between two contacting bodies is quite small (<0.01 mm);
thus, the Grashof number based on the gap thickness is less than
2500. Consequently, in most instances the heat transfer through the
interstitial gas in the gap occurs by conduction.

In applications where the contact pressure is relatively low, the
real contact area is limited to an even smaller portion of the apparent
area, on the order of 1% or less. Consequently, the heat transfer takes
place mainly through the interstitial gas in the gap. The relative mag-
nitude of the gap heat transfer varies greatly with the applied load,
surface roughness, gas pressure, and ratio of the thermal conductiv-
ities between the gas and solids. As the contact pressure increases,
the heat transfer through the microcontacts increases and becomes
more significant. Many engineering applications of thermal contact
resistance (TCR) are associated with low contact pressure where air
(interstitial gas) is at atmospheric pressure; therefore, modeling of
the gap resistance is an important issue.

The goal of this study is to develop an approximate, comprehen-
sive, yet simple model for determining the heat transfer through the
gap between conforming rough surfaces. This model will be used
in the second part of this work3 to develop an analytical compact
model for predicting the TCR of nonconforming rough contacts
in the presence of an interstitial gas. The model covers the entire
range of gas conduction heat transfer modes, that is, continuum,
slip, transition, and free molecular.

Fig. 1 Contact of conforming rough surfaces with presence of inter-
stitial gas.

a) Section through two contacting
surfaces

b) Corresponding section through equivalent
rough–smooth flat

Fig. 2 Equivalent contact of conforming rough surfaces.

Theoretical Background
TCR of conforming rough surfaces in the presence of intersti-

tial gas includes two components, thermal constriction/spreading
resistance of microcontacts, Rs, and gap thermal resistance Rg .

Microcontacts Heat Transfer
All solid surfaces are rough, where this roughness or surface tex-

ture can be thought of as the surface heights’ deviation from the
nominal topography. If the asperities of a surface are isotropic and
randomly distributed over the surface, the surface is called Gaus-
sian. Williamson et al.4 have shown experimentally that many of the
techniques used to produce engineering surfaces give a Gaussian dis-
tribution of surface heights. Many researchers including Greenwood
and Williamson5 assumed that the contact between two Gaussian
rough surfaces can be simplified to the contact between a single
Gaussian surface, having effective surface characteristics, with a
perfectly smooth surface, where the mean separation between the
two contacting planes Y remains the same (Fig. 2); for more details,
see Bahrami et al.6 The equivalent roughness σ and surface slope
m can be found from

σ =
√

σ 2
1 + σ 2

2 , m =
√

m2
1 + m2

2 (1)

It is common to assume that the microcontacts are isothermal.6

Thermal constriction/spreading resistance of microcontacts can be
modeled by using a flux tube geometry,7 or if microcontacts are
considered to be located far (enough) from each other, the isothermal
heat source on a half-space solution8 can be used. When comparison
was made with the earlier mentioned solutions, that is, the flux tube
and the half-space, Bahrami et al.9 showed that the microcontacts
can be modeled as heat sources on a half-space for engineering TCR
applications.

Bahrami et al.,9 assuming plastically deformed asperities and us-
ing scaling analysis techniques, developed an analytical model to
predict TCR of conforming rough contacts in a vacuum, Rs ,

Rs = 0.565H ∗(σ/m)

ks F
(2)

where

ks = 2k1k2/(k1 + k2), H ∗ = c1(σ
′/m)c2

They compared their model with more than 600 TCR experimental
data points collected in a vacuum by many researchers and showed
good agreement. The rms difference between Eq. (2) and the data
was reported to be approximately 14%.

Gap Heat Transfer
According to Springer,10 conduction heat transfer in a gas layer

between two parallel plates is commonly categorized into four heat-
flow regimes: continuum, temperature jump or slip, transition, and
free molecular. The parameter that characterizes the regimes is the
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Fig. 3 Heat flux regimes as function of Knudsen number.

Knudsen number

K n = �/d (3)

where � and d are the molecular mean free path and the distance
separating the two plates, respectively. The molecular mean free
path is defined as the average distance a gas molecule travels before
it collides with another gas molecule, and it is proportional to the
gas temperature and inversely proportional to the gas pressure,11

� = (P0/Pg)(Tg/T0)�0 (4)

where �0 is the mean free path value at some reference gas temper-
ature T0 and pressure P0.

Figure 3 shows the four heat flow regimes, that is, continuum,
temperature jump or slip, transition, and free molecular, as a func-
tion of inverse Knudsen number. In the continuum regime, where
K n � 1, the heat transfer between the plates takes place mainly
through collisions of the gas molecules, and the rate of heat transfer
is independent of the gas pressure but varies with the gas tempera-
ture. Fourier’s law of conduction can be used in this regime. As the
gas pressure is reduced, the intermolecular collisions become less
frequent and the heat exchange of energy between gas molecules
and the plates starts to affect the heat transfer between the plates.
According to Kennard,11 for 0.01 ≤ K n ≤ 0.1, the heat exchange
exhibits a temperature-jump behavior. The energy transfer between
the gas molecules and the plate is incomplete, and a discontinuity
of temperature develops at the wall–gas interface. At the extreme
end of very low gas pressure (or high gas temperature), the free-
molecular regime, K n ≥ 10, intermolecular collision is rare, and the
essential mechanism for heat transfer in this regime is the energy
exchange between the gas molecules and the plates. The region be-
tween the temperature-jump and the free-molecular regimes, that is,
0.1 ≤ K n ≤ 10, is called the transition region in which intermolec-
ular collisions and the energy exchange between the gas molecules
and the plate walls are both important.

Using Maxwell’s theory for temperature-jump distance,
Kennard11 modeled the gas conduction between two parallel plates
for temperature jump as qg = kg(T1 − T2)/(d + M). Yovanovich12

proposed that Kennard’s expression can be used to predict the gas
conduction for all four regimes. It can be seen that for the continuum
regime M → 0; thus, M � d, for the free molecular regime M → ∞
and M � d also. Therefore, heat flux for all four flow regimes can
be effectively represented by

qg = [kg/(d + M)](T1 − T2) (5)

where T1, T2, kg , and qg are the uniform temperatures of the two
parallel plates, gas thermal conductivity, and the gap heat flux, re-
spectively. When Eq. (5) and the definition of thermal resistance,
that is, R = �T/Q, are used, gap thermal resistance can be found
from

Rg = (d + M)/(kg Ag) (6)

where Ag = Aa − Ar is the gap heat transfer area. The gas parameter
M is defined as

M = [(2 − αT 1)/αT 1 + (2 − αT 2)/αT 2][2γ /(1 + γ )](1/Pr)�

(7)

where αT 1, αT 2, and � are thermal accommodation coefficients cor-
responding to the gas–solid combination of plates 1 and 2 and the
molecular mean free path at Pg and Tg , respectively.

Thermal accommodation coefficient αT depends on the type of
the gas–solid combination and is in general very sensitive to the
condition of the solid surfaces. It represents the degree to which the
kinetic energy of a gas molecule is exchanged while in collision
with the solid wall. Song and Yovanovich13 purposed a correlation
for predicting αT for engineering surfaces,

αT = exp

[
−0.57

(
Ts − T0

T0

)](
M∗

g

6.8 + M∗
g

)

+ 2.4µ

(1 + µ)2

{
1 − exp

[
−0.57

(
Ts − T0

T0

)]}
(8)

where for monatomic gases

M∗
g = Mg

and for diatomic/polyatomic gases

M∗
g = 1.4Mg

where T0 = 273 K. Equation (8) is general and can be used for any
combination of gases and solid surfaces for a wide temperature
range. The agreement between the predicted values and the experi-
mental data is within 25%.

Yovanovich et al.14 developed a statistical sophisticated model
(here called the integral model) to predict thermal gap conductance
between conforming rough surfaces. The integral model takes into
consideration the variation in the local gap thickness due to the sur-
face roughness. It assumes that the temperature of the two surfaces
in contact are uniform and the interface gap consists of many ele-
mental flux tubes of different thermal resistances. The resistances of
these elemental flux tubes are then assumed to be in parallel, which
results in an overall gap conductance in an integral form that may
be represented in thermal resistance form as

Rg =
√

2πY

/{
Agkg

∫ ∞

0

exp[−(Y/σ − t/σ)2/2]

(t/σ)/(Y/σ) + M/Y
d

(
t

σ

)}
(9)

where Rg, t , kg , Ag, and Y are thermal gap resistance, length of the
elemental flux tube or the local gap thickness, thermal conductivity
of the gas, gap heat transfer area, and mean plane separation distance,
respectively.

Equation (9) is in integral form, and its evaluation requires a
numerical integration. Song15 correlated Eq. (9) and proposed an
expression that can be written as follows:

Rg = Y

kg Ag

[
1 + M

Y
+ 0.304(σ/Y )

(1 + M/Y )
− 2.29(σ/Y )2

(1 + M/Y )2

]
(10)

Present Model
Implementing Eq. (9) results in a complicated integral for the

effective thermal resistance of the microgaps in the second part of
this study,3 that is, nonconforming rough joints in a gaseous envi-
ronment. To avoid a numerical solution, an approximate analytical
model is developed for predicting the heat transfer of interstitial
gases in the gap between conforming rough joints.

The geometry of the contact is shown in Figs. 1 and 4, where
the contact of two rough surfaces is simplified to the contact of an
equivalent rough and a smooth plate. It is assumed that the contacting
surfaces are Gaussian and the asperities deform plastically. Heat
transferred through the joint includes the microcontacts Qs and the
gas Qg heat flows.
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Fig. 4 Microcontacts and gap heat flows, conforming rough joints.

Fig. 5 Thermal resistance
network.

As already mentioned, microcontacts can be modeled as isother-
mal heat sources on a half-space. Considering circular shape micro-
contacts with the radius as on the order of micrometers, isothermal
planes with some temperatures Ti,1 and Ti,2 at depth l must exist in
bodies one and two, respectively (Fig. 4). Under vacuum conditions,
that is, Qg = 0, the distance between the isothermal planes and the
contact plane is l = 40as ∼ 40 µm (Ref. 1). When the gas pressures
is increased, heat flow through the joint increases and distance l de-
creases. Because microcontacts are assumed to be flat and located
in the contact plane, isothermal planes Ti,1 and Ti,2 are parallel to
the contact plane. Therefore, TCR can be represented by two sets of
thermal resistances in parallel between isothermal planes Ti,1 and
Ti,2,

R j = (1/Rs + 1/Rg)
−1 (11)

where

Rs =
( ns∑

i = 1

1

Rs,i

)−1

and ns are the equivalent thermal resistance of the microcontacts and
the number of microcontacts, respectively. The thermal resistance
of the microcontacts Rs is determined using Eq. (2).

Figure 5 shows the thermal resistance network of the joint. Be-
cause the thermal resistances are considered to be in parallel between
two isothermal plates Ti,1 and Ti,2, the gap resistance Rg has three
components, the gap resistance and R1 and R2, which correspond
to the bulk thermal resistance of the solid layers in bodies 1 and
2, respectively. The bulk resistances R1 and R2 can be considered
negligible in relation to Rg because the gas thermal conductivity is
much lower than the conductivity of the solids, that is, kg/ks ≤ 0.01.

Rg,total = R1 + R2︸ ︷︷ ︸
�Rg

+ (d + M)/(kg Ag) = Rg (12)

where R1 = l/ks,1 Ag , R2 = l/ks,2 Ag , and Ag = Aa − Ar is the gas
heat transfer area.

The real contact area is a very small portion of the apparent con-
tact area, that is, Ar � Aa ; thus, it can be assumed that Ag = Aa .
As a result, the heat transferred through the microgaps between
rough surfaces can be replaced by the gas heat transfer between two
isothermal parallel plates that are located at an effective distance
d from each other. In addition, the gap heat transfer area becomes

the apparent contact area Aa . As already mentioned, Eq. (5) can be
used to determine the heat transfer between two isothermal surfaces
through an interstitial gas for all four flow regimes.

To determine the gap thermal resistance, the effective distance
between contacting bodies, d, is required. For contact of Gaussian
rough surfaces with the mean separation Y , the statistical effective
plane separation over the contact area, d, can be found from

d =
∫ Y

−∞
(Y − z)φ(z) dz (13)

where φ(z) is the Gaussian distribution defined as

φ(z) = (
1
/√

2πσ
)

exp(−z2/2σ 2) (14)

where z and σ are surface heights and the equivalent rms surface
roughness, respectively. When Eq. (14) is substituted into Eq. (13),
after evaluating and simplifying, d becomes

d = (
σ
/√

2π
)[√

π(1 + erf λ)λ + exp(−λ2)
]

(15)

whereλ = Y/
√

2σ is the nondimensional mean separation. Equation
(15) is plotted over a wide range of λ, that is, 1 ≤ λ ≤ 5 in Fig. 6; a
nearly linear behavior can be observed over the comparison range.
Thus, a linear relationship for d can be derived in the form

d =
√

2σλ = Y (16)

The maximum relative difference between Eqs. (15) and (16) is less
than 1.7% over the entire range of λ. Equation (16) indicates that d
is identical to the mean separation between two planes.

For conforming rough contacts assuming plastic deformation of
asperities, it can be shown7

P/Hmic = 1
2 erfc λ (17)

or

λ = erfc−1(2P/Hmic) (18)

where Hmic, P = F/Aa , and erfc−1(·) are the effective microhard-
ness of the softer material in contact, contact pressure, and inverse
complementary error function, respectively.

Microhardness depends on several parameters: mean surface
roughness σ , mean absolute slope of asperities, m, type of mate-
rial, method of surface preparation, and applied pressure. Hegazy16

proposed correlations in the form of the Vickers microhardness for
calculating surface microhardness. Song and Yovanovich17 devel-
oped an explicit expression relating microhardness to the applied
pressure,

P/Hmic = (P/H ′)1/(1 + 0.071c2) (19)

Fig. 6 Comparison between analytical solution and linear correlation
of plane separation d.
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Fig. 7 Inverse complementary error function.

where H ′ = c1(1.62σ ′/m)c2 , σ ′ = σ/σ0, and σ0 = 1 µm. In situa-
tions where an effective value for microhardness Hmic,e is known,
the microhardness coefficients can be replaced by c1 = Hmic,e and
c2 = 0. When Eq. (19) is substituted in Eq. (18),

λ = Y
/√

2σ = erfc−1(2P/H ′) (20)

where for convenience parameter 1/(1 + 0.071c2) is assumed to
be 1. Note that −0.35 ≤ c2 ≤ 0.

Yovanovich12 proposed an accurate correlation for deter-
mining the inverse complementary error function, erfc−1(x) =
0.837[−ln(1.566x)]0.547 for x ≤ 0.01, with the maximum relative
error less than 0.25%. Because a broader range of erfc−1(·) is needed
in this study (especially the second part), with use of Maple,18 a set
of expressions for determining erfc−1(x) are developed that cover a
range of 10−9 ≤ x ≤ 1.9,

erfc−1(x) =






1

0.218 + 0.735x0.173
10−9 ≤ x ≤ 0.02

1.05(0.175)x

x0.12
0.02 < x ≤ 0.5

1 − x

0.707 + 0.862x − 0.431x2
0.5 < x ≤ 1.9

(21)

The maximum relative difference between Eq. (21) and erfc−1(x)
is less than 2.8% for the range 10−9 ≤ x ≤ 1.9. Figure 7 shows the
comparison between erfc−1(x) and Eq. (21).

When Eqs. (16) and (20) are combined, the gas thermal resistance
can be found from

Rg = (1/kg Aa)

[
M +

√
2σ erfc−1(2P/H ′)︸ ︷︷ ︸

Y

]
(22)

The thermal joint resistance can be calculated combining Eqs. (11),
(2), and (22).

Comparison Between Present and Integral Models
To compare the present model Eq. (22) with the integral model

Eq. (10), both expressions are nondimensionalized and rewritten in
the following form:

kg Aa Rg

Y

=






1 + M

Y
present model

1 + M

Y
+ 0.304(σ/Y )

(1 + M/Y )
− 2.29(σ/Y )2

(1 + M/Y )2
integral model

(23)

Table 1 Relative percent difference
between present and integral gap models

Y/σ

M/Y 3.50 3.00 2.50

0.001 9.97 15.26 24.39
0.01 9.63 14.76 23.64
0.10 6.87 10.74 17.48
0.50 1.68 3.04 5.45
1.00 0.17 0.65 1.54
2.00 −0.27 −0.18 0.01
10 −0.06 −0.06 −0.07
20 −0.02 −0.02 −0.02
50 0.00 0.00 0.00
100 0.00 0.00 0.00
6 × 106 0.00 0.00 0.00

Fig. 8 Comparison of present model and Song15 correlation.

The ratio Y/σ appears in the integral model correlation, which can
be interpreted as the level of loading. For a fixed contact geometry,
as the applied load increases, Y decreases and this parameter be-
comes smaller. Three values of Y/σ in Eq. (23) are included in the
comparison, 2.5, 3, and 3.5, which represent three levels of loading
from high to low, respectively (Fig. 8). The other parameter, M/Y ,
is varied over a wide range, 10−3 < M/Y ≤ ∞, from vacuum to at-
mospheric pressure conditions, respectively. Table 1 lists relative
differences between the present and the integral gap models. As
shown, the relative differences are negligible where M/Y ≥ 1, that
is, slip to free-molecular regimes. As the parameter M/Y becomes
smaller, that is, continuum regime (atmospheric gas pressure con-
dition), the relative difference becomes larger. It can also be seen
that the relative difference is larger at smaller values of Y/σ , that is,
higher loads. As already mentioned, the total or joint resistance is the
parallel combination of the microcontacts Rs and the microgaps Rg

resistances. Note that the contribution of the gas heat transfer is rel-
atively smaller in higher loads because the microcontact resistance
is smaller and controls the joint resistance. As a result, the relative
difference in the joint resistances determined from the present and
the integral gap models becomes smaller.

Parametric Study
The thermal joint resistance R j can be nondimensionalized with

respect to the thermal resistance of the microcontacts Rs

R∗
j = R j/Rs = 1/(1 + Rs/Rg) (24)

Equation (24) is plotted in Fig. 9; in the limit where Rg ap-
proaches infinity (vacuum condition), as expected R∗

j approaches
1 or R j = Rs . As Rs/Rg increases, R∗

j asymptotically approaches
R∗

g . The ratio of Rs/Rg decreases either by a decrease in the gas
pressure or an increase in the external load.

Effects of external load (applied pressure) and gas pressure on
thermal gap and joint resistances are investigated and shown in
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Table 2 Input parameters for a
typical SS-nitrogen joint

Parameter Value

αT (SS − N2) 0.78
bL 12.5 mm
σ 2 µm
m 0.12
F 35 N
�0 62.8 nm
kg , ks 0.031, 20 W/mK
c1, c2 6.23 GPa, −0.23

Fig. 9 Nondimensional thermal joint resistance.

Fig. 10 Effect of load on thermal joint resistance.

Figs. 10 and 11, respectively. Input parameters of a typical contact
are shown in Table 2; contacting surfaces are stainless steel and the
interstitial gas is nitrogen at 373.15 K and 50 torr.

The external load is varied over a wide range, 10 ≤ F ≤
180,000 N, to study the effect of load on thermal joint resistance.
As shown in Fig. 10, at light loads the gap thermal resistance is the
controlling component of thermal joint resistance. Thus, most of
the heat transfer occurs through the gas. As the load increases, Rs ,
which is inversely proportional to the load [Eq. (2)], decreases. As
a result, the mean separation between the two bodies, Y , decreases,
which leads to a decrease in Rg . In higher loads, Rs is smaller and
controls the joint resistance.

To study the effect of gas pressure on the thermal joint resistance,
the gas pressure is varied over the range of 10−5 ≤ Pg ≤ 760 torr,
while all other parameters in Table 2 are held constant. As shown in
Fig. 11, at very low gas pressures (vacuum) Rg is large. Thus Rs con-
trols the joint resistance by increasing the gas pressure, thermal gas
resistance decreases, and Rg becomes the controlling component.

Table 3 Range of parameters
for experimental data

Parameter Range

F 69.7–4357 N
P 0.14–8.8 MPa
ks 19.2–72.5 W/mK
m 0.08–0.205
Pg 10−5–760 torr
αT 0.55–0.9
σ 1.52–11.8 µm

Table 4 Properties of gases

Gas kg , W/mK Pr αT γ �0, nm

Ar 0.018 + 4.05 × 10−5T 0.67 0.90 1.67 66.6
He 0.147 + 3.24 × 10−4T 0.67 0.55 1.67 186.0
N2 0.028 + 5.84 × 10−5T 0.69 0.78 1.41 62.8

Fig. 11 Effect of nitrogen pressure on thermal joint resistance.

Comparison with Experimental Data
The present model is compared with more than 510 experimental

data points collected by Hegazy16 and Song.15 The geometry of the
experimental set up is shown in Fig. 1. Tests include two flat rough
cylindrical specimens with the same radius bL = 12.5 mm, which
are placed in contact by applying an external load in a chamber
filled with an interstitial gas. To minimize the radiation and con-
vection heat transfer to the surroundings, the lateral surfaces of the
specimens were insulated. Test specimens were made of stainless
steel (SS) 304 and nickel 200, and interstitial gases were argon, he-
lium, and nitrogen. The gas pressure was varied from atmospheric
pressure 760 to vacuum 10−5 torr. As summarized in Table 3, the
experimental data cover a relatively wide range of mechanical, ther-
mal, and surface characteristics.

Thermal properties of argon, helium, and nitrogen are listed in
Table 4.15,16 Note that the reference mean free paths, �0 nm, are at
288 K and 760 torr and temperature in kg correlations must be in
degrees Celsius.

Hegazy16 Experimental Data
Hegazy16 collected more than 160 data points during four sets

of experiments performed on SS 304 joints tested in nitrogen and
helium. Low thermal conductivity and high microhardness values
of SS 304 provide a reasonable set of extremes for verification of the
gap model. Table 5 lists the experiment numbers, solid–gas combi-
nations, gas pressure, surface roughness, and slope of the Hegazy
experimental data. The nominal contact pressure was varied from
0.459 to 8.769 MPa throughout the tests. The average gas tempera-
ture and thermal conductivity of SS 304 were reported in the range
of 170–220◦C and 20.2 W/mK, respectively.
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Table 5 Summary of Hegazy experiments16

Test Gas Pg , torr σ , µm m

T1 N2 562–574 5.65 0.153
T2 N2, He Vacuum, 40 5.61 0.151
T3 N2, He Vacuum, 40 6.29 0.195
T4 N2, He Vacuum, 40 4.02 0.168

Table 6 Summary of Song experiments15

Test Solid–gas P , MPa σ , µm m

T1 SS–N2, Ar, He 0.595–0.615 1.53 0.090
T2 SS–N2, Ar, He 0.467–0.491 4.83 0.128
T3 Ni–N2, Ar, He 0.511–0.530 2.32 0.126
T4 Ni–N2, Ar, He 0.371–0.389 11.8 0.206
T5 SS–N2, He 0.403–7.739 6.45 0.132
T6 SS–N2, He 0.526–8.713 2.09 0.904
T7 Ni–N2, He 0.367–6.550 11.8 0.206

Fig. 12 Comparison of present model with Hegazy data.16

The experimental data are nondimensionalized and compared
with the present model in Fig. 12. The maximum uncertainty of
the experimental data was reported to be 5.7%. As can be seen in
Fig. 12, the present model shows good agreement, where the rms
difference between the model and the data is approximately 6%.

Song15 Experimental Data
Song15 conducted seven sets of experiments performed on nickel

200 and SS 304 joints tested in argon, helium, and nitrogen. In addi-
tion to SS 304 specimens, nickel 200 was chosen, which has a ther-
mal conductivity of about 3.5 times that of SS 304 (at 170◦C). Thus,
the contribution of the microcontacts to the joint heat transfer is sig-
nificantly greater than that of a SS 304 joint of similar conditions.
Table 6 summarizes the experiment numbers, solid–gas combina-
tions, range of the nominal contact pressure, and surface roughness
and slope of the Song’s experimental data. The tests were conducted
in the following order: 1) at least one vacuum test, 2) series of helium
tests at various gas pressures, 3) vacuum test, 4) series of nitrogen
tests at various gas pressures, 5) vacuum test, and 6) series of argon
tests at various gas pressures. The gas pressure was varied from 10−5

to approximately 650 torr. The mean contact temperature, that is,
the mean gas temperature was maintained at approximately 170◦C,
and the average thermal conductivities of SS 304 and Ni 200 were
reported as 19.5 and 71.2 W/mK, respectively.

Experiments T5–T7 involved gas tests at several load levels, in-
dicated by letters A, B, C, and D in Fig. 13. The purpose of these
tests was to observe the load dependence of the thermal gap resis-
tance. As can be seen in Table 6, only helium and nitrogen were
used in these tests because it had been concluded from tests T1–T4
that argon behaves essentially the same as nitrogen.

Approximately 350 data points are nondimensionalized and com-
pared with the present model in Fig. 13. The maximum uncertainty

Fig. 13 Comparison of present model with Song data.15

Fig. 14 Comparison of present model with data of Song15 and
Hegazy.16

of the experimental data was reported to be less than 10%. As shown
in Fig. 13, the present model shows good agreement with the data
over the entire range of the comparison. The rms difference between
the model and the data is 8.1 percent.

Figure 14 shows the comparison between the present model and
both Hegazy and Song experimental data. The rms difference be-
tween the present model and experimental is approximately 7.3
percent.

Conclusions
Heat transfer of an interstitial gas between conforming ran-

dom rough joints was studied. When the general expression for
heat transfer between two isothermal parallel plates proposed by
Yovanovich12 was used, an approximate analytical model was devel-
oped. The model covers the four regimes of heat conduction modes
of gas, that is, continuum, temperature jump or slip, transition, and
free molecular and accounts for gas and solid mechanical and ther-
mal properties, gas pressure and temperature, surface roughness,
and applied load.

It was shown that the gas and the microcontacts thermal resis-
tances are in parallel. With use of a statistical relation for Gaussian
rough surfaces, it was illustrated that for engineering applications the
effective separation over the contact area, d, is identical to the mean
separation between two contacting surfaces Y . With the knowledge
that the real contact area is a very small portion of the apparent
area, it was assumed that the gap heat transfer area is identical to
the apparent area. Also uniform temperatures for the contacting sur-
faces were assumed. These assumptions simplified the analysis, and
a simple relationship for the gap thermal resistance was derived. A
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correlation for inverse complementary error function was developed
that determines erfc−1(·) within 2.8% relative error.

The influence of the main input parameters on the gap and joint
thermal resistances revealed the following:

1) With constant gas pressure, at light loads Rg was the controlling
part of R j . Thus most of the heat transfer occurred through the gas.
By the increase of the external load R j , Rs and Rg decreased and
Rs became relatively small and controlled the joint resistance.

2) With constant load, at very low gas pressures (vacuum) Rg was
large. Thus Rs controlled the joint resistance, by the increase of the
gas pressure, Rg decreased and became the controlling component
of R j .

The present model was compared with the integral model
(Yovanovich et al.14). It was shown that the relative differences be-
tween the present and the integral model were negligible for the slip
to free-molecular regimes. The relative difference became larger for
the continuum regime (atmospheric gas pressure condition) at rel-
atively high loads. When it is considered that the contribution of
the gas heat transfer is relatively small at higher loads, the relative
difference in the total joint resistances determined from the present
and the integral gap model became smaller.

The present model was compared with more than 510 experi-
mental data points collected by Hegazy16 and Song.15 Tests were
performed with SS 304 and nickel 200 with three gases, that is, ar-
gon, helium, and nitrogen. The data covered a wide range of surface
characteristics, applied load, thermal and mechanical properties,
and gas pressure, which was varied from vacuum to atmospheric
pressure. The present model showed good agreement with the data
over the entire range of the comparison. The rms relative difference
between the model and data was determined to be approximately
7.3%.
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